首页 > 热点播报 > 正文

AI实践|在青云科技KubeSphere 上部署 AI 大模型管理工具Ollama

随着人工智能、机器学习、AI 大模型技术的迅猛发展,我们对计算资源的需求也在不断攀升。特别是对于需要处理大规模数据和复杂算法的 AI 大模型,GPU 资源的使用变得至关重要。对于运维工程师而言,掌握如何在 Kubernetes 集群上管理和配置 GPU 资源,以及如何高效部署依赖这些资源的应用,已成为一项不可或缺的技能。

今天,我将带领大家深入了解如何在 KubeSphere 平台上,利用 Kubernetes 强大的生态和工具,实现 GPU 资源的管理和应用部署。以下是本文将要探讨的三个核心主题:

1.集群扩容与 GPU 节点集成 :我们将通过 KubeKey 工具,扩展 Kubernetes 集群并增加具备 GPU 能力的 Worker 节点,为 AI 应用提供必要的硬件支持。

2.GPU 资源的 Kubernetes 集成 :使用 Helm 安装和配置 NVIDIA GPU Operator,这是 NVIDIA 官方提供的一个解决方案,旨在简化 Kubernetes 集群中 GPU 资源的调用和管理。

网友评论

热门IT产品
  1. ¥7599
    苹果iPhoneX 64GB
    ·
  2. ¥5799
    三星S9
    ·
  3. ¥4498
    vivo NEX旗舰版
    ·
  4. ¥4999
    OPPO Find X
    ·
  5. ¥1799
    努比亚Z18mini
    ·
  6. ¥1499
    OPPO A5
    ·
  7. ¥1999
    荣耀Play(4GB RAM)
    ·
  8. ¥1598
    vivo Y85
    ·
  9. ¥3499
    坚果R1(6GB RAM)
    ·
  10. ¥3599
    一加6(8GB RAM)
    ·